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High-density direct currents are used to drive flux quanta via the Lorentz force toward a highly ordered “free
flux flow” �FFF� dynamic state, made possible by the weak-pinning environment of high-quality, single-crystal
samples of two low-Tc superconducting compounds, V3Si and LuNi2B2C. We report the effect of the magnetic
field-dependent fluxon-core size on flux flow resistivity � f. Much progress has been made in minimizing the
technical challenges associated with the use of high currents. Attainment of a FFF phase is indicated by the
saturation at highest currents of flux flow dissipation levels that are well below the normal-state resistance and
have field-dependent values. The field dependence of the corresponding � f is shown to be consistent with a
prediction based on a model for the decrease of fluxon-core size at higher fields in weak-coupling BCS s-wave
materials.
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I. INTRODUCTION

A current issue in the flux dynamics of mixed state super-
conductors is the nature of the finite-sized, nonsuperconduct-
ing cores of these magnetic flux quanta1,2—henceforth
termed “fluxons.” While most analyses and applications do
not consider the details of the finite size and anisotropic
shape of the fluxon-core, there are important effects, espe-
cially at lower temperatures and higher magnetic fields. This
arises mainly from the unique electronic structure of the non-
superconducting material within the core, which is not yet
fully understood. Fluxon-core structure and shape greatly af-
fect the way the vortices interact. For example, phase transi-
tions from one type of flux-lattice symmetry to another have
been predicted and discovered as a result of nonlocal elec-
trodynamic effects and interaction with the physical crystal
lattice.3,4 The internal structure of the core also determines
the viscous force against which fluxons move under current-
driven Lorentz forces, which also affects how phase transi-
tions occur and, in turn, determines the useful current-
carrying capacity of a superconductor.1

These issues have been explored in previous works on
various materials, using methods such as: �1� small-angle
neutron scattering �SANS� which first revealed the lattice-
symmetry transitions5 and has subsequently shown a number
of structural features in the flux lattice,3,4,6–11 �2� scanning
tunneling microscopy12 which has revealed the existence of

internal electronic states within the core and also confirmed
the lattice-symmetry transitions seen by SANS,5 �3� magne-
tization measurements,13 which have revealed a field depen-
dence to the fluxon-core size, and �4� muon spin rotation
spectroscopy2 which have not only confirmed the field de-
pendence of the core size but also correlated them with the
observed lattice-symmetry transitions. However, comple-
mentary direct currents �DC� transport measurements,
proven effective in probing the behavior of fluxons, have not
yet been attempted toward the specific question of fluxon-
core size effects—even though the experimental signature of
these phenomena has already been predicted.

The application of direct current is arguably the most di-
rect way of providing the Lorentz force necessary to drive
the motion of fluxons �so-called “flux flow”�, while at the
same time quantifying the dissipation voltage per unit cur-
rent associated with this motion, i.e., the flux flow resistance.
Free flux flow resistivity � f refers to the ohmiclike dissipa-
tion process in which vortices move in a so-called free flux
flow �FFF� regime wherein the viscous drag on the moving,
interacting fluxons greatly exceeds any residual pinning
forces present; this leads to a highly ordered movement of
fluxons.14 The dependence of � f on magnetic field H ��flux
density B in cgs units� is traditionally modeled using the
linear, Bardeen-Stephen �BS� relation at a fixed
temperature:15
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� f = �N
H

Hc2
�1�

where �N is the extrapolated normal-state resistivity and Hc2
is the upper critical field for that temperature. For clean,
weak-coupling BCS s-wave materials,16 Kogan and
Zhelezina �KZ� have predicted a deviation from this expres-
sion due to a field-dependent core size, ��H�=���c2, where
�c2=��o / �2��oHc2� is the usual coherence length, com-
monly assumed to be field-independent. For the BS expres-
sion �1�, substituting �c2→��H� yields the modified form,13

� f

�N
=

H

Hc2
→ H

2��o�2�H�
�o

= h��2 �2�

where h=H /Hc2. In the field-dependent KZ picture, for re-
duced temperature t=T /Tc�0.5 and h�0.6, the quantity
��=��H� /�c2 is found to be independent of material
parameters16 for relatively “clean” �weakly scattering� mate-
rials with scattering parameter �=hv /2�kTcl	1.0. Here, v
is the average Fermi velocity and l is the electronic mean-
free path. Under these conditions, all ���h , t� collapse onto
the ���h , t=0� curve. For higher �h , t�, ���h , t� tend toward
���h , t=0� only as �→0. By contrast, increasing � brings
���h , t� toward unity �constant�. More interestingly, raising
the reduced temperature t has the same effect16 as raising �.
Using the numeric solutions16 for ���h� for h�0.15 and low
�, curves have been generated for � f /�n versus h for t=0 and
t=0.5; in these numerical results �shown in Fig. 4�, the curve
for higher t indeed lies closer to Bardeen-Stephen flux flow
�BSFF� ���=1�. Toward confirming these predictions, this
study measures the normalized � f for samples with low �, at
the vaporization temperature of liquid helium which is al-
most halfway between t=0 and t=0.5, and for the largest
possible range of magnetic fields h�0.15. The results of this
investigation reveal that, indeed, the field dependence of � f is
consistent with the KZ prediction.

II. EXPERIMENTAL DETAILS

A key technical challenge in examining the flux medium
is the ability to achieve a “textbook” flux lattice: one that is
relatively free of any pinning, thermal fluctuations, or distor-
tions due to electronic anisotropy �so that the flux lines are
less like barely connected “pancake vortices” and more like
uniform “rods”�. This favors conventional superconductors
that are relatively isotropic and have critical temperatures
�Tc� low enough to minimize thermally induced effects. The
latter is most conveniently quantified using the Ginzburg
number, Gi, defined as:17

Gi =

2

2
� kTc

4��oHc
2�0��o

3�0��
2

�3�

where Hc is the thermodynamic critical field, �o is the coher-
ence length, and 
2 quantifies the effective supercarrier mass
anisotropy. For this reason, samples of V3Si and LuNi2B2C
were used, where 
2�1, and Gi�10−7. �By contrast,
high-Tc cuprate superconductors, with 
2�25, have Gi
�10−2.� In addition, this added benefit of very low aniso-

tropy encourages more three-dimensional flux motion. An-
other requirement, to minimize pinning, is quality materials
that contain very few defects, something difficult to achieve.
The quality of the V3Si and LuNi2B2C samples in this study
has already been demonstrated in other, previous
work.13,18–20 In addition, a measurement of the residual re-
sistivity ratio �RRR�, for which a sample could be considered
sufficiently “clean” at values of �10, yields values exceed-
ing 35, as shown in Fig. 1. The scattering parameter � pre-
viously defined was also determined: for the present V3Si
material, this is estimated at 0.38. �Here we use root-mean-
square v= �2.94�1014 cm2 /s2�1/2 from band-structure
calculations,3 with the value l=32 nm from a previous
study4 on the same sample.� For the LuNi2B2C sample, � is
estimated at 0.25. �Using �l=0.42�10−5 �� cm2, also
from band-structure calculations,21 and ��Tc�=1.0 �� cm,
one obtains l=42 nm; also, root-mean-square
va= �1.87�1014 cm2 /s2�1/2—since the sample is a single
crystal.22�

Experimentally, driving the fluxons toward a FFF phase is
done by pulsing the current through the sample in a four-
terminal strip geometry. Pulse widths were between 17 and
50 ms duration, and in opposite polarity in order to eliminate
thermal voltage offsets, and voltage measurements were
carefully timed so that sampling occurred at the center of
each pulse. Another technical challenge is the necessity of
applying high current densities through bulk samples, which
required currents exceeding 50 A �provided by a 100-A Val-
halla current calibrator�. In addition to limiting the duty
cycle by pulsing the current, a very low-resistance sample
circuit was constructed by using thick current leads—the
thickest are gauge “0000” wires used to connect the current
source to the cryostat probe—and by minimizing the contact
resistance between sample and current leads. The latter was
done using ultrasonic soldering, by which oxides on the con-
tact surfaces are simultaneously lifted off by ultrasonic cavi-
tation to encourage wetting, which was especially necessary

FIG. 1. Temperature dependence of resistivity for the two com-
pounds, showing critical temperatures Tc �insets�, and high RRR
that indicate low-impurity levels. The inset graphs show closeups of
the transition temperatures and are described in the discussion of
results in the text.
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due to the difficulty of bonding with bulk samples. In this
way, contact resistance was limited to the level of micro-
ohms. Another consideration is the fact that high current is
applied while the sample is in a dissipative state, raising the
possibility of sample heating; to minimize this, the sample
was kept submerged at all times in liquid helium at 4.2 K �as
also closely monitored by weakly field-dependent Cernox
temperature sensors mounted with the sample�. Because of
all the above measures, dissipation in the mixed state could
be limited to levels well below that causing boiling of the
cryogenic film around the sample.23

III. RESULTS AND DISCUSSION

Results for electrical transport in the superconductive
state are presented in Fig. 2, as plots of the voltage-current
ratio �V / I� versus current. The semilog plots indicate that
indeed the dissipation levels saturate at highest currents, and
that the saturation levels are well below the level for Rn
�indicated by the dashed line� and are field dependent. In the
figure, the normal-state-transition resistances Rn at 4.2 K are
the saturation levels measured at the corresponding
Hc2—which is defined where Jc�H� drops below 1 A /cm2

�later, important magnetoresistive effects will be described.�.
To obtain the ratio � f /�n=Rf /Rn, one must determine the flux
flow resistance Rf, which is the level toward which the �V / I�
curves saturate. These saturation levels were obtained via a
best fit of the �V / I� versus I data to the empirical asymptotic
form, Rf�1− Ic / I�, yielding the typical curves also shown in
Fig. 2.

A frequent signature of weak-pinning systems is the pres-
ence of a small window of re-entrant pinning that overcomes
the elasticity of the flux medium, which occurs just below
critical field Hc2 �Tc2�. This is manifested as an anomalous

“peak” in the otherwise monotonic field dependence of criti-
cal current density, Jc�H�—the so-called Jc “peak
effect”24—shown in the insets of Fig. 2 for the present ma-
terials. Being an indicator of more effective pinning, this Jc
“peak” has been known to disrupt the formation of a FFF
phase,19 and thus the “onset” field �the lower-field bound of
the Jc peak� serves as a practical upper boundary for the FFF
phase. As expected, only below this onset are voltage-current
�VI� curves seen to: �i� saturate to constant levels at highest
currents at resistivity levels that are �ii� below that for the
normal-state Rn, and are �iii� field dependent. In this study,
an upper bound was determined to be 3.0 T for LuNi2B2C
and 14.0 T for V3Si, as indicated by the vertical line and the
labeled arrow. The transport data in the main panels of Fig. 2
lie under these respective field boundaries.

The resulting experimental field dependencies of � f /�n
are plotted in Fig. 4, together with the theoretical predictions
of BSFF and KZ. Most remarkable is that the LuNi2B2C data
are consistent with the KZ curves. As previously described,
KZ predicts that elevating the temperature above zero has the
same effect as increasing the scattering as quantified by the
parameter �: a weakening of the field dependence of the
fluxon-core size, which would be manifested here by a curve
shifted closer toward the BSFF. If one considers the sample
as clean at �=0.25��1.0�, then the shift is more likely due to
t being halfway between 0 and 0.5—just as the data lie al-
most halfway between the KZ curves for t=0 and 0.5. Thus
LuNi2B2C data are consistent with the KZ-predicted effect of
varying t.

Analysis of the V3Si data is more complex, due to sub-
stantial magnetoresistive effects on the values of “Rn” as
well as the presence of a Martensitic transformation at
around T�21 K, both of which had been studied by Zotos
et al.25 Qualitatively, this effect inflates the value of �n—i.e.,
the resistivity of the normal-state fluxon-cores—to a level

(b)(a)

FIG. 2. Representative curves for the dissipation level, V / I, versus current for �a� LuNi2B2C at fields H=1.2, 1.5, 1.8, 2.0, 2.2, 2.5, 2.8,
and 3.0 T; and �b� V3Si at H=5.0,5.5, . . . ,7.5,8.0 T. Curves are plotted on semilogarithmic axes to show saturation at highest currents and
at field-dependent levels well below the normal-state dissipation level Rn measured at T=4.2 K, H=Hc2 �values indicated by dashed line�.
Insets: Nonmonotonic “peak effect” in the field dependence of critical current density Jc at T=4.2 K, due to re-entrant weak pinning near
Hc2; vertical line indicates upper bound for possibility of FFF, see text.
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dependent on field H. Indeed, in the �-T curve of V3Si in
Fig. 1, the measured value of �n=1.56 �� cm, open circle
at 4.2 K, H=Hc2=18.3 T, is actually higher than
��T=Tc , H=0�=1.39 �� cm. By comparison, for
LuNi2B2C, the measured value of �n=1.8 �� cm �square
symbol�, lies below the value ��T=Tc�=2.0 �� cm,
consistent with previous studies26 verifying negligible mag-
netoresistance in this compound. �The dashed-line curve is
not a fit, but a guide to the eye.� In order to obtain reasonable
values of magnetoresistivity �n�H� at 4.2 K for fields within
the FFF regime, R�T ,H� curves in the normal state were
obtained for fields up to 9 T on the same sample—as shown
in Fig. 3. By then extrapolating T2 fits, resistivities at 4.2 K
were obtained and fit—along with the data point of
�n�T=4.2 K, H=Hc2�=1.56 ��—to the Kohler rule
form, �� /�o=A�H /�o��, with A=0.0151 ���-cm /T�−2 and
�=1.34; this is shown in the Fig. 3 inset. Here,
�o=��T=4.2 K, H=0�. The formula was then used to inter-
polate all values �n�H� used for � f /�n in Fig. 4 which are
indicated by solid triangles. For contrast, one finds that
ignoring the magnetoresistive effects and taking
�n�T=4.2 K, H=Hc2�=1.56 �� would have yielded the
lower curve shown by open symbols whose slope would
have been inconsistent with an approach of � f /�n toward 1 at
h=1. �Interestingly, the Kohler rule form obtained on this
material is different from that obtained previously by Zotos
et al., a fact which has led to another in-depth inquiry into
the magnetoresistivity of these particular samples of V3Si
which is currently ongoing.�

Qualitatively, the resulting V3Si results are quite similar
to those for LuNi2B2C, with both deviating significantly
from BSFF predictions and showing consistency with field-
dependent core size effects. As for the KZ-finding that in-
creasing � makes the system more BS-like, the V3Si data are
consistent with this prediction: the � f /�n curve is found to be

closer to BSFF compared with LuNi2B2C, appearing to ap-
proach the KZ t=0.5 curve at higher fields. The curves do
not coincide even though both data sets are at approximately
the same t. However, V3Si does have a higher scattering
parameter �; therefore the shift is consistent with the predic-
tion of a weaker field dependence of the fluxon-core size
with higher �, i.e., stronger scattering. It is interesting that
the two curves might either merge or cross at lower fields
�where the currents required to achieve FFF become difficult
to attain�, the reason for which is not yet clear and demands
investigation by some other means.

IV. CONCLUSIONS

Free flux flow resistivity levels determined by DC trans-
port measurements in weakly pinned systems are consistent
with the KZ model of a weak-coupling BCS manifestation of
finite fluxon-core size effects at low temperatures, in two
different s-wave superconductors, V3Si and LuNi2B2C. Fig-
ure 4 summarizes the main result. With a correction due to
the known magnetoresistivity of V3Si in the normal state, the
data appear to be consistent with the prediction that the field
dependence of fluxon-core size is suppressed by both tem-
perature and scattering. Finding such consistency with two
different materials is remarkable, and underscores the value
of performing a similar measurement using the same sys-
tems. In addition, this study also shows that free flux flow
could be an insightful probe into properties of the fluxon-
core. Since fluxon-core effects should also be detected with
in-field specific heat,13 it would also be interesting to per-
form same-system specific heat measurements to see if simi-
lar consistency would be found.
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